3 x 50-minute lectures weekly
6 x 3-hour laboratories per semester
Enrolment not permitted
NANO2701 has been successfully completed
Topic description

This topic deals with the fundamentals of fabrication and characterisation of two-dimensional structures at the nanscale. Two approaches of fabrication are discussed, namely the "top-down" approach and the "bottom-up" approach.

Topics covered will include:

  1. Issues of scale in relation to nanotechnology
  2. Contact angles and surface tension
  3. Film growth and vacuum science
  4. Physical vapour deposition (PVD), chemical vapour deposition (CVD) and atomic layer deposition (ALD)
  5. Superlattices/quantum wells
  6. Carbon nanotubes/graphene fabrication and applications
  7. Self-assembly
  8. Patterning and lithography
  9. Molecular imprinting methodologies and applications
  10. Ellipsometry/ Quartz crystal microbalance
  11. Atomic force microscopy (AFM) and scanning microscopes
  12. Scanning tunnelling microscopy (SEM)/Scanning electron microscopy (SEM)/ transmission electron microscopy (TEM)
  13. Surface Fourier Transform Infrared (FTIR) spectroscopy
  14. Confocal Raman imaging
Educational aims

This topic aims to:

  • Introduce students to the techniques of making and characterising two-dimensional structures on the nanoscale and help them appreciate the special properties and novel nanoscopic phenomena that these structures might have
  • Introduce students to more advanced theory of instrumental techniques and how these are used to characterise particular types of nanomaterials and structures
Expected learning outcomes
On completion of this topic you will be expected to be able to:

  1. Understand changes in surface properties as decrease size of structures
  2. Understand how to fabricate two-dimensional structures at the nanoscale
  3. Understand various approaches required make patterned surfaces using both chemical and biological methods
  4. Understand cutting-edge methods used to characterise both patterned and non-patterned two-dimensional structures
  5. Have the ability to develop hands-on laboratory skills
  6. Have an awareness of laboratory practice and the sensitivity of nanoscale structures
  7. Have effective oral, written and interpersonal communicators to a wide range of audiences
  8. Appreciate the value of research and the pursuit of ongoing professional development

Key dates and timetable

(1), (2)

Each class is numbered in brackets.
Where more than one class is offered, students normally attend only one.

Classes are held weekly unless otherwise indicated.


If you are enrolled for this topic, but all classes for one of the activities (eg tutorials) are full,
contact your College Office for assistance. Full classes frequently occur near the start of semester.

Students may still enrol in topics with full classes as more places will be made available as needed.

If this padlock appears next to an activity name (eg Lecture), then class registration is closed for this activity.

Class registration normally closes at the end of week 2 of each semester.

Classes in a stream are grouped so that the same students attend all classes in that stream.
Registration in the stream will result in registration in all classes.
  Unless otherwise advised, classes are not held during semester breaks or on public holidays.