This topic covers: introduction to conventional control systems; elements of conventional control systems; modelling of linear time-invariant control systems; block diagrams; standard systems; time-domain system response; frequency-domain system response; control system specifications; system stability and sensitivity; disturbance rejection techniques; system steady-state accuracy; time-domain analysis of control systems; root-locus design techniques; Routh stability criterion; frequency-domain analysis of control systems; Nyquist-diagram design techniques; Nyquist stability criterion; compensation of single-input single-output linear time-invariant control systems in time-domain and frequency-domain; cascade control; feedback control; feedforward control; phase-lead and phase-lag control; lead-lag control; PID multimode control; classical control systems design examples.
This topic aims to provide students with a comprehensive understanding of the principles of classical control systems theory and technology as applied to the design and analysis of conventional control systems.
Timetable details for 2021 are no longer published.