1 x 3-hour lecture weekly
1 x 2-hour tutorial weekly
4 x 2-hour practicals per semester
1 1 of ENGR1732, PHYS1101, PHYS1102, PHYS1332, PHYS1601, PHYS1602
2 MATH1121 - Mathematics 1A
Must Satisfy: (1 and 2)
Enrolment not permitted
ENGR9801 has been successfully completed
Topic description

Mechanics of Machines

  1. Mechanisms and kinematics
  2. Position and displacement analysis
  3. Mechanism design
  4. Motion analysis in machinery
  5. Instantaneous centre of rotation (graphical and analytical)
  6. Velocity and acceleration analyses of mechanisms
  7. Cams: design and kinematic analysis, the Geneva mechanism
  8. Gears: kinematic analysis and selection
  9. Belt and chain drives
  10. Screw mechanisms


  1. Introduction to Mechanical Vibrations
  2. Underdamped Free Vibrations
  3. Damped Vibrations
Educational aims

This topic aims to give students an understanding of machine kinematics, dynamics and vibration, and to introduce students to the machine/mechanism design process.

Expected learning outcomes
On completion of this topic you will be expected to be able to:

  1. Analyse and design mechanisms
  2. Understand and analyse motion analysis in machinery
  3. Calculate and identify instantaneous centres of rotation of machines
  4. Calculate the velocity and acceleration of mechanisms
  5. Understand, analyse and design cam systems
  6. Understand analyse, and design geared systems
  7. Understand, analyse and design belt and chain drives
  8. Understand, analyse and design screw mechanisms
  9. Understand and analyse single and multi-degree of freedom systems
  10. Demonstrate understanding of the design of vibration absorbers
  11. Understand and analyse Distributed Parameter Systems
  12. Demonstrate understanding of vibration testing and modal analysis

Key dates and timetable

(1), (2)

Each class is numbered in brackets.
Where more than one class is offered, students normally attend only one.

Classes are held weekly unless otherwise indicated.


If you are enrolled for this topic, but all classes for one of the activities (eg tutorials) are full,
contact your College Office for assistance. Full classes frequently occur near the start of semester.

Students may still enrol in topics with full classes as more places will be made available as needed.

If this padlock appears next to an activity name (eg Lecture), then class registration is closed for this activity.

Class registration normally closes at the end of week 2 of each semester.

Classes in a stream are grouped so that the same students attend all classes in that stream.
Registration in the stream will result in registration in all classes.
  Unless otherwise advised, classes are not held during semester breaks or on public holidays.