2021 Study Plan Template

Bachelor of Science (Honours) (Energy and Advanced Materials)

Please note that this document is provided as a guide only. Students are responsible for ensuring that they have completed 144 units of study according to the official Bachelor of Science (Honours) (Energy and Advanced Materials) course rule available at https://students.flinders.edu.au/my-course/course-rules/undergrad/bscs/bschs-enam

Students are responsible for planning their Core, Option and Elective topics ahead to ensure they meet the topic prerequisites.

A list of all topics, including topic prerequisite information and alternate study period availabilities, is available at 2021 Topics.

Semester 1 start:

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>MATH1121 Mathematics 1A</td>
<td>PHYS1101 Fundamental Physics I</td>
</tr>
<tr>
<td>Year 1</td>
<td>S2</td>
<td>MATH1122 Mathematics 1B</td>
</tr>
<tr>
<td>S2</td>
<td>ENGR2711 Engineering Mathematics</td>
<td>PHYS2701 Quantum Concepts</td>
</tr>
<tr>
<td>Year 2</td>
<td>S1</td>
<td>ENGR2812 Engineering Materials 2</td>
</tr>
<tr>
<td>S2</td>
<td>ENGR2722 Analysis of Engineering Systems</td>
<td>PHYS2701 Quantum Concepts</td>
</tr>
<tr>
<td>Year 3</td>
<td>S1</td>
<td>MATH3711 Complex Analysis</td>
</tr>
<tr>
<td>S2</td>
<td>STEM7001 Honours Research Methods</td>
<td>CPES7711 Advanced Techniques in Chemical and Physical Science</td>
</tr>
<tr>
<td>Year 4</td>
<td>S1</td>
<td>STEM7000B Honours Research Project in STEM</td>
</tr>
</tbody>
</table>
Semester 2 start:

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Elective Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>ENGR1722</td>
<td>Engineering Physics and Materials</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH1121</td>
<td>Mathematics 1A</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
</tbody>
</table>

Summer Semester

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Elective Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MATH1122</td>
<td>Mathematics 1B</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Elective Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>PHYS1101</td>
<td>Fundamental Physics I</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STEM1001</td>
<td>Nature of STEM</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGR2711</td>
<td>Engineering Mathematics</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Elective Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>PHYS1102</td>
<td>Fundamental Physics II</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGR2722</td>
<td>Analysis of Engineering Systems</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGR2812</td>
<td>Engineering Materials 2</td>
<td>MATH3711</td>
<td>Complex Analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Elective Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>PHYS2701</td>
<td>Quantum Concepts</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYS2702</td>
<td>Classical Physics</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Elective Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>PHYS2712</td>
<td>Thermodynamics and Energy Systems</td>
<td>MATH3712</td>
<td>Partial Differential Equations</td>
</tr>
<tr>
<td></td>
<td>STEM3712</td>
<td>Nuclear and Statistical Physics</td>
<td>PHYS3701</td>
<td>Partial Differential Equations</td>
</tr>
<tr>
<td></td>
<td>PHYS3702</td>
<td>Solid State Physics and Optoelectronics</td>
<td>PHYS3702</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Elective Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>CPES7711</td>
<td>Advanced Techniques in Chemical and Physical Science</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPES7721</td>
<td>Advanced Chemical and Physical Science</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Elective Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>STEM7001</td>
<td>Honours Research Methods</td>
<td>STEM7000A</td>
<td>Honours Research Project in STEM</td>
</tr>
<tr>
<td></td>
<td>STEM7000A</td>
<td>Honours Research Project in STEM</td>
<td>STEM7000B</td>
<td>Honours Research Project in STEM</td>
</tr>
<tr>
<td></td>
<td>STEM7000C</td>
<td>Honours Research Project in STEM</td>
<td>STEM7000C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 4</th>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Elective Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>CPES7711</td>
<td>Advanced Techniques in Chemical and Physical Science</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPES7721</td>
<td>Advanced Chemical and Physical Science</td>
<td>^ Elective Topic</td>
<td></td>
</tr>
</tbody>
</table>

Key:

- **Core Topic:** Compulsory topic
- **Option Topic:** A choice from a list of specified topics
- **^ Elective Topic:** Any topic offered by the University at the appropriate year level, provided entry and course requirements are met and that no more than 45 units of First Year topics are included in the 108-unit program. Please refer to the course rule for a list of recommended electives. Students are encouraged to enroll in STEM3001 Science Connect as a third-year elective.